202 research outputs found

    MRI Radiomic Signature of White Matter Hyperintensities Is Associated With Clinical Phenotypes

    Get PDF
    Objective: Neuroimaging measurements of brain structural integrity are thought to be surrogates for brain health, but precise assessments require dedicated advanced image acquisitions. By means of quantitatively describing conventional images, radiomic analyses hold potential for evaluating brain health. We sought to: (1) evaluate radiomics to assess brain structural integrity by predicting white matter hyperintensities burdens (WMH) and (2) uncover associations between predictive radiomic features and clinical phenotypes. Methods: We analyzed a multi-site cohort of 4,163 acute ischemic strokes (AIS) patients with T2-FLAIR MR images with total brain and WMH segmentations. Radiomic features were extracted from normal-appearing brain tissue (brain mask-WMH mask). Radiomics-based prediction of personalized WMH burden was done using ElasticNet linear regression. We built a radiomic signature of WMH with stable selected features predictive of WMH burden and then related this signature to clinical variables using canonical correlation analysis (CCA). Results: Radiomic features were predictive of WMH burden (R-2 = 0.855 +/- 0.011). Seven pairs of canonical variates (CV) significantly correlated the radiomics signature of WMH and clinical traits with respective canonical correlations of 0.81, 0.65, 0.42, 0.24, 0.20, 0.15, and 0.15 (FDR-corrected p-values(CV1-6) < 0.001, p-value(CV7) = 0.012). The clinical CV1 was mainly influenced by age, CV2 by sex, CV3 by history of smoking and diabetes, CV4 by hypertension, CV5 by atrial fibrillation (AF) and diabetes, CV6 by coronary artery disease (CAD), and CV7 by CAD and diabetes. Conclusion: Radiomics extracted from T2-FLAIR images of AIS patients capture microstructural damage of the cerebral parenchyma and correlate with clinical phenotypes, suggesting different radiographical textural abnormalities per cardiovascular risk profile. Further research could evaluate radiomics to predict the progression of WMH and for the follow-up of stroke patients' brain health.Peer reviewe

    Genetic susceptibility loci for cardiovascular disease and their impact on atherosclerotic plaques

    Get PDF
    Background: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms. Methods: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression. Results: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10−6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood. Conclusions: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics

    Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis

    Get PDF
    Thrombotic diseases are among the leading causes of morbidity and mortality in the world. To add insights into the genetic regulation of thrombotic disease, we conducted a genome-wide association study (GWAS) of 6135 self-reported blood clots events and 252 827 controls of European ancestry belonging to the 23andMe cohort of research participants. Eight loci exceeded genome-wide significance. Among the genome-wide significant results, our study replicated previously known venous thromboembolism (VTE) loci near the F5, FGA-FGG, F11, F2, PROCR and ABO genes, and the more recently discovered locus near SLC44A2 In addition, our study reports for the first time a genome-wide significant association between rs114209171, located upstream of the F8 structural gene, and thrombosis risk. Analyses of expression profiles and expression quantitative trait loci across different tissues suggested SLC44A2, ILF3 and AP1M2 as the three most plausible candidate genes for the chromosome 19 locus, our only genome-wide significant thrombosis-related locus that does not harbor likely coagulation-related genes. In addition, we present data showing that this locus also acts as a novel risk factor for stroke and coronary artery disease (CAD). In conclusion, our study reveals novel common genetic risk factors for VTE, stroke and CAD and provides evidence that self-reported data on blood clots used in a GWAS yield results that are comparable with those obtained using clinically diagnosed VTE. This observation opens up the potential for larger meta-analyses, which will enable elucidation of the genetics of thrombotic diseases, and serves as an example for the genetic study of other diseases

    DNA methylation analyses identify an intronic ZDHHC6 locus associated with time to recurrent stroke in the Vitamin Intervention for Stroke Prevention (VISP) clinical trial

    Get PDF
    Aberrant DNA methylation profiles have been implicated in numerous cardiovascular diseases; however, few studies have investigated how these epigenetic modifications contribute to stroke recurrence. The aim of this study was to identify methylation loci associated with the time to recurrent cerebro- and cardiovascular events in individuals of European and African descent. DNA methylation profiles were generated for 180 individuals from the Vitamin Intervention for Stroke Prevention clinical trial using Illumina HumanMethylation 450K BeadChip microarrays, resulting in beta values for 470,871 autosomal CpG sites. Ethnicity-stratified survival analyses were performed using Cox Proportional Hazards regression models for associations between each methylation locus and the time to recurrent stroke or composite vascular event. Results were validated in the Vall d'Hebron University Hospital cohort from Barcelona, Spain. Network analyses of the methylation loci were generated using weighted gene coexpression network analysis. Primary analysis identified four significant loci, cg04059318, ch.2.81927627R, cg03584380, and cg24875416, associated with time to recurrent stroke. Secondary analysis identified three loci, cg00076998, cg16758041, and cg02365967, associated with time to composite vascular endpoint. Locus cg03584380, which is located in an intron of ZDHHC6, was replicated in the Vall d'Hebron University Hospital cohort. The results from this study implicate the degree of methylation at cg03584380 is associated with the time of recurrence for stroke or composite vascular events across two ethnically diverse groups. Furthermore, modules of loci were associated with clinical traits and blood biomarkers including previous number of strokes, prothrombin fragments 1 + 2, thrombomodulin, thrombin-antithrombin complex, triglyceride levels, and tissue plasminogen activator. Ultimately, these loci could serve as potential epigenetic biomarkers that could identify at-risk individuals in recurrence-prone populations.Supported through Academic Library Services’ PLOS Institutional Account Progra

    Genomic Risk Profiling of Ischemic Stroke: Results of an International Genome-Wide Association Meta-Analysis

    Get PDF
    Introduction: Familial aggregation of ischemic stroke derives from shared genetic and environmental factors. We present a meta-analysis of genome-wide association scans (GWAS) from 3 cohorts to identify the contribution of common variants to ischemic stroke risk.Methods: This study involved 1464 ischemic stroke cases and 1932 controls. Cases were genotyped using the Illumina 610 or 660 genotyping arrays; controls, with Illumina HumanHap 550Kv1 or 550Kv3 genotyping arrays. Imputation was performed with the 1000 Genomes European ancestry haplotypes (August 2010 release) as a reference. A total of 5,156,597 single-nucleotide polymorphisms (SNPs) were incorporated into the fixed effects meta-analysis. All SNPs associated with ischemic stroke (P < 1 x 10(-5)) were incorporated into a multivariate risk profile model.Results: No SNP reached genome-wide significance for ischemic stroke (P < 5 x 10(-8)). Secondary analysis identified a significant cumulative effect for age at onset of stroke (first versus fifth quintile of cumulative profiles based on SNPs associated with late onset, beta = 14.77 [10.85, 18.68], P = 5.5 x 10(-12)), as well as a strong effect showing increased risk across samples with a high propensity for stroke among samples with enriched counts of suggestive risk alleles (P < 5 x 10(-6)). Risk profile scores based only on genomic information offered little incremental prediction.Discussion: There is little evidence of a common genetic variant contributing to moderate risk of ischemic stroke. Quintiles based on genetic loading of alleles associated with a younger age at onset of ischemic stroke revealed a significant difference in age at onset between those in the upper and lower quintiles. Using common variants from GWAS and imputation, genomic profiling remains inferior to family history of stroke for defining risk. Inclusion of genomic (rare variant) information may be required to improve clinical risk profiling

    GISCOME – Genetics of Ischaemic Stroke Functional Outcome network: A protocol for an international multicentre genetic association study

    Get PDF
    © 2017, © European Stroke Organisation 2017. Introduction: Genome-wide association studies have identified several novel genetic loci associated with stroke risk, but how genetic factors influence stroke outcome is less studied. The Genetics of Ischaemic Stroke Functional outcome network aims at performing genetic studies of stroke outcome. We here describe the study protocol and methods basis of Genetics of Ischaemic Stroke Functional outcome. Methods: The Genetics of Ischaemic Stroke Functional outcome network has assembled patients from 12 ischaemic stroke projects with genome-wide genotypic and outcome data from the International Stroke Genetics Consortium and the National Institute of Neurological Diseases Stroke Genetics Network initiatives. We have assessed the availability of baseline variables, outcome metrics and time-points for collection of outcome data. Results: We have collected 8831 ischaemic stroke cases with genotypic and outcome data. Modified Rankin score was the outcome metric most readily available. We detected heterogeneity between cohorts for age and initial stroke severity (according to the NIH Stroke Scale), and will take this into account in analyses. We intend to conduct a first phase genome-wide association outcome study on ischaemic stroke cases with data on initial stroke severity and modified Rankin score within 60–190 days. To date, we have assembled 5762 such cases and are currently seeking additional cases meeting these criteria for second phase analyses. Conclusion: Genetics of Ischaemic Stroke Functional outcome is a unique collection of ischaemic stroke cases with detailed genetic and outcome data providing an opportunity for discovery of genetic loci influencing functional outcome. Genetics of Ischaemic Stroke Functional outcome will serve as an exploratory study where the results as well as the methodological observations will provide a basis for future studies on functional outcome. Genetics of Ischaemic Stroke Functional outcome can also be used for candidate gene replication or assessing stroke outcome non-genetic association hypotheses

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    Rare missense functional variants at COL4A1 and COL4A2 in sporadic intracerebral Hhmorrhage

    Get PDF
    Objective: To test the genetic contribution of rare missense variants in COL4A1 and COL4A2 in which common variants are genetically associated with sporadic intracerebral hemorrhage (ICH), we performed rare variant analysis in multiple sequencing data for the risk for sporadic ICH. Methods: We performed sequencing across 559Kbp at 13q34 including COL4A1 and COL4A2 among 2,133 individuals (1,055 ICH cases; 1,078 controls) in US-based and 1,492 individuals (192 ICH cases; 1,189 controls) from Scotland-based cohorts, followed by sequence annotation, functional impact prediction, genetic association testing, and in silico thermodynamic modeling. Results: We identified 107 rare nonsynonymous variants in sporadic ICH, of which two missense variants, rs138269346 (COL4A1I110T) and rs201716258 (COL4A2H203L), were predicted to be highly functional and occurred in multiple ICH cases but not in controls from the US-based cohort. The minor allele of rs201716258 was also present in Scottish ICH patients, and rs138269346 was observed in two ICH-free controls with a history of hypertension and myocardial infarction. Rs138269346 was nominally associated with non-lobar ICH risk (P=0.05), but not with lobar ICH (P=0.08), while associations between rs201716258 and ICH subtypes were non-significant (P&gt;0.12). Both variants were considered pathogenic based on minor allele frequency (&lt;0.00035 in EUR), predicted functional impact (deleterious or probably damaging), and in silico modeling studies (substantially altered physical length and thermal stability of collagen). Conclusions: We identified rare missense variants in COL4A1/A2 in association with sporadic ICH. Our annotation and simulation studies suggest that these variants are highly functional and may represent targets for translational follow-up

    Variants at APOE influence risk of deep and lobar intracerebral hemorrhage

    Full text link
    Objective Prior studies investigating the association between APOE alleles ε2/ε4 and risk of intracerebral hemorrhage (ICH) have been inconsistent and limited to small sample sizes, and did not account for confounding by population stratification or determine which genetic risk model was best applied. Methods We performed a large-scale genetic association study of 2189 ICH cases and 4041 controls from 7 cohorts, which were analyzed using additive models for ε2 and ε4. Results were subsequently meta-analyzed using a random effects model. A proportion of the individuals (322 cases, 357 controls) had available genome-wide data to adjust for population stratification. Results Alleles ε2 and ε4 were associated with lobar ICH at genome-wide significance levels (odds ratio [OR] = 1.82, 95% confidence interval [CI] = 1.50–2.23, p = 6.6 × 10 −10 ; and OR = 2.20, 95%CI = 1.85–2.63, p = 2.4 × 10 −11 , respectively). Restriction of analysis to definite/probable cerebral amyloid angiopathy ICH uncovered a stronger effect. Allele ε4 was also associated with increased risk for deep ICH (OR = 1.21, 95% CI = 1.08–1.36, p = 2.6 × 10 −4 ). Risk prediction evaluation identified the additive model as best for describing the effect of APOE genotypes. Interpretation APOE ε2 and ε4 are independent risk factors for lobar ICH, consistent with their known associations with amyloid biology. In addition, we present preliminary findings on a novel association between APOE ε4 and deep ICH. Finally, we demonstrate that an additive model for these APOE variants is superior to other forms of genetic risk modeling previously applied. ANN NEUROL 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78478/1/22134_ftp.pd
    • …
    corecore